Publications and Prepublications
- F. Bouvier, E. Peyrot , A. Balendran, C. Ségalas, I. Roberts, F. Petit, R. Porcher, Do machine learning methods lead to similar individualized treatment rules? A comparison study on real data, 2023
ArXiv version.
- F. Grolleau, F. Petit, S. Gaudry, E. Diard, J. Quenot, D. Dreyfuss, V.-T. Tran, R. Porcher, Personalizing renal replacement therapy initiation in the intensive care unit: a reinforcement learning-based strategy with external validation on the AKIKI randomized controlled trials, 2023
medrxiv version.
- N. Berkouk F. Petit, Projected distances for multi-parameter persistence modules, 2022
ArXiv version.
- F. Grolleau, F. Petit and R. Porcher, A Comprehensive Framework for the Evaluation of Individual Treatment Rules From Observational Data, 2022
ArXiv version.
- F. Petit, P. Schapira and L. Waas, A property of the interleaving distance for sheaves, 2021,
ArXiv version.
- F. Petit and P. Schapira, Thickening of the diagonal, interleaving distance and Fourier-Sato transform, 2020 (accepted in Selecta Mathematica)
ArXiv version.
- Q. Du, G. Biau, F. Petit and R. Porcher, Wasserstein Random Forests and Applications in Heterogeneous Treatment Effects, AISTATS 2021: 1729-1737, 2021
ArXiv version.
- D. Gepner and F. Petit, An integral representation theorem for DQ-modules, 2020
ArXiv version.
- N. Berkouk and F. Petit, Ephemeral persistence modules and distance comparison, Algebr. Geom. Topol. 21(1): 247-277 (2021).
ArXiv version.
- F. Petit, Holomorphic Frobenius actions for DQ-modules, 2018, (accepted in PRIMS)
ArXiv version.
- F. Petit, Tempered subanalytic topology on algebraic varieties, 2017,
ArXiv version.
- F. Petit, The Lefschetz-Lunts formula for deformation quantization
modules, Mathematische Zeitschrift 2012,
Doi:10.1007/s00209-012-1046-4.
ArXiv version.
- F. Petit, A Riemann-Roch Theorem for dg Algebras, Bulletin
de la SMF 141, fascicule 2 (2013), 197-223.
ArXiv
version.
Reports
- Quantization of spectral curves and DQ-modules,
Oberwolfach Reports , Volume 13, Issue 1, 2016, 432-433.
- The codimension-three conjecture for holonomic DQ-modules,
Oberwolfach Reports , , Volume 11, Issue 2, 2014, 1385-1387.
Thesis and Habilitation
Thesis
made under the supervision of Pierre Schapira and defended on
the 20th june 2012.
Habilitation
(HDR) defended on the 8th july 2021.
François Petit-Inserm